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Abstract: Convolutional neural networks are widely used in the field of hyperspectral image classifi-
cation. After continuous exploration and research in recent years, convolutional neural networks have
achieved good classification performance in the field of hyperspectral image classification. However,
we have to face two main challenges that restrict the improvement of hyperspectral classification
accuracy, namely, the high dimension of hyperspectral images and the small number of training
samples. In order to solve these problems, in this paper, a new hyperspectral classification method is
proposed. First, a three-dimensional octave convolution (3D-OCONV) is proposed. Subsequently,
a dense connection structure of three-dimensional asymmetric convolution (DC-TAC) is designed.
In the spectral branch, the spectral features are extracted through a combination of the 3D-OCONV
and spectral attention modules, followed by the DC-TAC. In the spatial branch, a three-dimensional,
multiscale spatial attention module (3D-MSSAM) is presented. The spatial information is fully
extracted using the 3D-OCONV, 3D-MSSAM, and DC-TAC. Finally, the spectral and spatial informa-
tion extracted from the two branches is fully fused with an interactive information fusion module.
Compared to some state-of-the-art classification methods, the proposed method shows superior
classification performance with a small number of training samples on four public datasets.

Keywords: attention; convolution neural networks (CNNs); hyperspectral image classification;
spatial and spectral features; information integration

1. Introduction

With the rapid development of imaging technology, remote sensing images have been
paid more attention and have been applied in more and more fields. Spatial information
and spectral information on land cover targets can be simultaneously provided by hyper-
spectral images (HSIs). Because of these characteristics, hyperspectral images are widely
used in many remote sensing applications, such as medicine [1], agriculture [2], food [3],
forest monitoring, and urban management [4]. In order to improve these applications,
some tasks related to hyperspectral images have been developed in recent years, such as
hyperspectral image classification [5], hyperspectral image unmixing [6], and hyperspectral
image anomaly detection [7,8]. Hyperspectral image classification is considered a basic
classification task. Each sample of the hyperspectral image is assigned a semantic label,
which is the main principle of hyperspectral image classification. The most important aim
of hyperspectral image classification is to effectively extract spatial spectral features and
design a classification module.

In order to obtain better classification performance, researchers have made continuous
efforts in past decades. Initially, researchers realized hyperspectral image classification
using some methods based on machine learning classifiers, such as decision tree [9], random
forest [10], support vector machine [11], and sparse representation [12]. However, the
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classification results of these pixel-level classification methods did not reach a satisfactory
classification level. The reason is that these methods consider more spectral features than
spatial features [13]. Some classification methods based on spectral and spatial features have
been proposed by researchers. This classification method can effectively solve this problem.
For example, the module feature extraction method was proposed in [14]. Using this
module, spatial information in hyperspectral images can be effectively extracted. Statistical
modules, such as conditional random field [15] and Markov random field [16], can be
applied to hyperspectral image classification, and classification experiments can be carried
out using spatial information and spectral information in hyperspectral images. Although
the classification performance is improved to a certain extent, these modules heavily rely
on hand-selected features. That is, the complex content in hyperspectral images may not be
represented by most manual feature methods, which is one of the reasons limiting the final
classification performance.

In the automatic extraction of nonlinear and hierarchical features, deep learning tech-
nology has shown excellent comprehensive performance. Computer vision tasks (such as
image classification [17], semantic segmentation [18], and object detection [19]), natural
language processing (such as information extraction [20], machine translation [21], and
question answering systems [22]), image classification, and other tasks have achieved
significant development with the support of deep learning technology. Some represen-
tative feature extraction methods [23] include structural filtering-based methods [24–26],
morphological contour-based methods [27], random field-based methods [28,29], sparse
representation-based methods [30], and segmentation-based methods [31]. With the de-
velopment of artificial intelligence, researchers have gradually introduced deep learning
technology into the field of remote sensing [32] and achieved good classification results.
In [33], a deep belief network (DBN) was used for feature extraction and classification of
hyperspectral images. In [34], the features of hyperspectral images were extracted using a
stack automatic encoder (SAE). However, the inputs of DBN and SAE networks are pixel-
level spectral vectors that cannot use spatial information, and classification performance
still has great potential to improve. They can classify hyperspectral images using spec-
tral information and spatial information, e.g., ResNet [35], CapsNet [36], DenseNet [37],
GhostNet [38], and dual-branch network [39]. ResNet can better combine the shallow
features of hyperspectral images, while DenseNet can better combine the deep features of
hyperspectral images, and then classify hyperspectral images accordingly [40,41]. In the
hyperspectral image classification task, the relationship between different spectral bands
and the similarity between different spatial positions can be captured using CapsNet [42].
The working principle of GhostNet is to use a small amount of convolution to extract the
spatial and spectral features of the input hyperspectral image before performing linear
transformation on the extracted features, and finally generating the feature map through
concatenation to obtain the classification results. Due to the special structure of the double
branch network, it is more suitable for exploring the spectral/spatial features of hyperspec-
tral images so as to effectively classify hyperspectral images [43]. In addition to the above
methods, there are many new hyperspectral image classification methods. For example,
RNN [44] and LSTM [45] were used to conduct further research after taking continuous
spectral bands as temporal data. In [46], a hyperspectral image classification network,
a fast dynamic graph convolution network, and CNN (FDGC), which combines graph
convolution and neural networks, was proposed. This network can extract the inherent
structural information of each part using the dynamic graph convolution module, which
greatly avoids the disadvantage of large memory consumption by the semisupervised
graph convolution neural network adjacency matrix. In [47], an HSI classification model
based on a graph convolution neural network was presented. It can extract feature pixels
from local spectral/spatial features, preserve specific pixels used in classification, and
remove redundant pixels.

Attention mechanisms have received considerable attention in recent years because
they can capture important spectral and spatial information. Many attention-based methods
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have been developed for hyperspectral image classification [48]. The method based on
deep learning can be greatly improved. Firstly, the structure of some networks is very
complex, and the number of parameters of these networks is also very large. This makes it
difficult to train them with fewer training samples. Secondly, hyperspectral images contain
complex spectral and spatial features. Not only is global information very important, but
other local information, such as spatial information and spectral band information, is also
very important for classification.

The dual-branch dual attention network (DBDA) was proposed in [49]. One branch
uses channel attention to obtain spectral information, while the other branch uses a spatial
attention module to extract spatial information. Using 3D-CNN to classify hyperspectral
images, spectral/spatial features can be extracted as a whole. For example, Chen et al. pro-
posed a structure based on CNN to extract depth features while capturing spatial/spectral
features. Spectral/spatial information can also be extracted separately and classified after
the information is fused. For example, a three-layer convolutional neural network architec-
ture was proposed in [50]. This network architecture can extract the spatial information
and spectral information of hyperspectral images layer by layer from the shallow layer
to the deep layer, fuse the extracted spatial spectral information, and finally classify and
optimize the fused information. In [51], a spatial residual network was proposed. The
spatial residual module and the spectral residual module are used to continuously learn
and identify rich spatial spectral information in hyperspectral images, which can greatly
avoid the occurrence of overfitting and improve the network operation speed. An end-
to-end fast dense spectral spatial convolution (FDSSC) network for hyperspectral image
classification was proposed in [52], which can reduce dimensionality. This network uses
convolution kernels of different sizes to effectively extract spectral/spatial information. A
dual-branch dual attention network (DBMA) was proposed in [53]. In this network struc-
ture, multiple attention modules are used to extract spatial spectral information. Lastly, the
spatial information and spectral information captured on the two branches are fused, and
the features are fused before classification. An attention multibranch CNN architecture
based on an adaptive region search (RS-AMCNN) was proposed in [54]. If one or more
windows are used as the input of hyperspectral images, a loss of contextual information can
occur. If RS-AMCNN is used, this loss of context information can be effectively avoided,
and classification accuracy can be improved. In [55], an effective transmission method
was proposed to classify hyperspectral images. This method mainly projects different
sensors and different spectral band numbers into the spectral space of hyperspectral im-
ages. This can ensure that the relative positions of each spectral band are aligned. The
network uses the depth network structure of the layered network, and then ensures that the
depth features and shallow features are effectively extracted. Even if the network is deep,
better classification results can be obtained. In [56], a CNN framework with a dense spatial
spectrum is used, including the feedback attention mechanism, FADCNN. Use compact
connections to combine spectral spatial features to extract sufficient information.

A hyperspectral image classification method based on multiscale super pixels and a
guided filter (MSS-GF) was proposed in [57], which can capture spatial local information at
different scales in different regions. The content of HSI is rich and complex, many different
materials have similar texture characteristics, and the amount of data calculation results in
the performance of many CNN modules not being fully utilized. Standard CNNs cannot
adequately obtain spectral/spatial information from hyperspectral images because of their
potential redundancy and noise.

To solve these problems and improve classification performance, this paper pro-
poses a new hyperspectral image classification method based on a combination of three-
dimensional octave convolution (3D-OCONV), a three-dimensional multiscale spatial
attention module (3D-MSSAM), and a dense connection structure of three-dimensional
asymmetric convolution (DC-TAC). In the spectral branch, a 3D-OCONV module with a
few parameters is adopted to capture the spectral information of hyperspectral images,
and then the spectral attention mechanism is followed. By utilizing the spectral attention
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mechanism, important spectral features can be highlighted. Then, three sets of DC-TAC
are used to extract spectral information at different scales. In the spatial branch, the 3D-
OCONV module is also utilized to obtain spatial information, and then the 3D-MSSAM is
adopted to extract the spatial information of different scales and regions. Next, three sets
of DC-TAC are used to extract spatial features. At the end of the network, an interactive
information fusion module is developed to fuse the spatial and spectral features captured
by the spectral and spatial branches.

The main contributions of this paper are as follows.

(1) A three-dimensional multiscale spatial attention module (3D-MSSAM) is developed to
learn the spatial features of hyperspectral images. Two branches with different scales
are used to extract spatial information. Through this method, the spatial features of
different scales can be fused to improve classification performance.

(2) The proposed network adopts a double-branch structure and introduces a new three-
dimensional octave convolution (3D-OCONV) module into each branch. It fuses
the information between high and low frequencies so as to further improve the
representation ability of features. The module has fewer parameters and can improve
the classification performance of the network.

(3) A dense connection structure of three-dimensional asymmetric convolution (DC-TAC)
is designed. A dense connection uses three groups of 3D asymmetric convolutions
with different scales, which can extract spatial and spectral features from horizontal,
vertical, and overall perspectives. Moreover, in order to improve classification per-
formance and reduce the number of parameters, packet convolution is adopted in
asymmetric convolution. In this way, the full extraction of features is conducive to
fusion information, thus improving the final classification performance.

(4) An interactive information fusion module is presented that can fuse the extracted spec-
tral information and spatial information in an interactive way. We first supplement the
spatial information extracted by the spatial branch with the spectral information ex-
tracted by the spectral branch, and then fuse the complementary information. Finally,
the fused information is used for the final classification.

The remainder of this article is arranged as follows: the proposed method is described
in detail in Section 2; the experimental results and analysis are given in Section 3; the
proposed method is discussed in Section 4; and some conclusions are given in Section 5.

2. Materials and Methods
2.1. The Structure of the Proposed Method

A double-branch structure is adopted in the proposed method, i.e., spectral informa-
tion is obtained by the spectral branch, and spatial information is obtained by the spatial
branch. First, the dimensionality of the hyperspectral image is reduced by principal compo-
nent analysis (PCA). Next, the spectral information of the hyperspectral image is obtained
from the spectral branch using the proposed 3D-OCONV. To fully capture spectral infor-
mation, a spectral attention module and DC-TAC are used behind the 3D-OCONV. Then,
to fully exploit the spatial features in the spatial branches, a combination of 3D-OCONV
and 3D-MSSAM is used to improve the representation of spatial information, and DC-TAC
is used to continue capturing spatial information. The overall schematic diagram of the
proposed method is shown in Figure 1. Finally, through the above operations, two maps of
spatial and spectral features are obtained. This paper designs an interactive information
fusion module that can make full use of the information in these two parts. Through the
information fusion module, spatial and spectral features can be fused by learning from each
other, important information can be retained, and redundant information can be removed.
Below, each module of the proposed method, i.e., 3D-OCONV, 3D-MSSAM, spectral atten-
tion module, DC-TAC, and interactive information fusion module, is introduced.
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Figure 1. Overall schematic diagram of the proposed method.

2.2. 3D-OCONV

For the network framework of hyperspectral image classification based on ordinary
3D-CNN, there is some spatial and spectral redundancy in the extracted feature map, which in-
creases the storage and computing costs. Hyperspectral images contain abundant information.
The purpose of using octave convolution is to halve the spatial resolution of low-frequency
feature maps, reduce redundant spatial information, and improve the computational efficiency
of the network. The original octave convolution [58] can process two-dimensional data effec-
tively. A three-dimensional octave convolution is used in the network structure proposed in
this paper. We replace the original two-dimensional average pooling with three-dimensional
average pooling, set the size of the three-dimensional average pooling convolution kernel to
(1, 1, 1), and set the stride to (1, 1, 1), so that more feature information on the extracted feature
map can transmit to the next layer. In order to fully extract spatial and spectral information, all
the two-dimensional convolutions in the octave convolution are replaced by three-dimensional
convolutions. The size of the convolution kernel is set to (3, 3, 1), the stride is set to (1, 1, 1),
and the padding is set to (1, 1, 0).

The use of three-dimensional octave convolution enables more efficient processing of
hyperspectral image signatures and reduces channel redundancy through orthogonal and
interactive methods.

The structure of the 3D octave convolution is shown in Figure 2. It can be seen from
Figure 2 that the 3D-OCONV consists of four paths. The information update of the high-
frequency and low-frequency feature maps is indicated by the two green paths, and the
information exchange between the two octaves is indicated by the two red paths. Suppose
that X ∈ Ph×w×c represents the input feature tensor of octave convolution, where h and
w represent the spatial size, and c represents the number of feature maps or channels.
The input feature X is decomposed into X = {X = XH , XL} along the channel dimension,
where XH ∈ P(1−β)h×w×c represents the high-frequency feature map to capture image
details, and XL ∈ Pβ h

2×
w
2 ×c represents the low-frequency feature map with more contextual

information. β ∈ [0, 1] represents the channel ratio allocated to the high-frequency part,
and the definition of the high-frequency feature map is eight degrees higher than that of
the low-frequency part. This operation makes the spatial resolution of the input features
different, and the traditional convolution cannot be represented in this way.
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Figure 2. Schematic diagram of the three-dimensional octave convolution.

The low-frequency part XL is upsampled to the original spatial or spectral resolution,
and then convoluted with the high-frequency part XH . The low-frequency part is pooled
to reduce the spatial or spectral resolution, and then connected with the low-frequency
part for convolution. This not only enables the low-frequency information and high-
frequency information in the tensor to be effectively processed but also enables effective
inter-frequency communication. Let Y be the output tensor; the high-frequency and low-
frequency output feature maps are denoted by Y = {YH , YL}, where YH = YH→H + YL→H ,
YL = YL→L + YH→L, and YA→B represent the convolution update from group A to group B
of the feature map, YH→H and YL→L represent the intra-frequency update, and YH→L and
YL→H represent inter-frequency communication. The convolution kernel W is divided into
two components W = {WH , WL}, which are convoluted with XH and XL, respectively. The
two components of W can be further divided into two parts, WH = [WH→H , WL→H ] and
WL = [WL→L, WH→L], as shown in Figure 3.

Figure 3. Schematic diagram of octave convolution.

For the high-frequency feature map, regular convolution is used at position (p, q).
For inter-frequency communication, the low-frequency feature map is connected with the
high-frequency feature after upsampling, and the process can be represented as follows:

Yp,q
H = Yp,q

H→H + Yp,q
L→H

= ∑
i,j∈Nk

Wi+ k−1
2 ,j+ k−1

2
H→H

T
Xp+i,q+j

H

+ ∑
i,j∈Nk

Wi+ k−1
2 ,j+ k−1

2
L→H

T
X|

p
2 |+i,| q2 |+j

L

(1)
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For the low-frequency feature map, in order to realize inter-frequency communi-
cation, the high-frequency features can be downsampled and then combined with the
low-frequency feature map for convolution. The specific process is

Yp,q
L = Yp,q

L→L + Yp,q
H→L

= ∑
i,j∈Nk

Wi+ k−1
2 ,j+ k−1

2
L→L

T
Xp+i,q+j

L

+ ∑
i,j∈Nk

Wi+ k−1
2 ,j+ k−1

2
H→L

T
X(2×p+0.5+i),(2×q+0.5+j)

H

(2)

where (p, q) represents the position coordinate, and NK =
{
(i, j) : i =

{
− k−1

2 , . . . , k−1
2

}}
,{

j =
{
− k−1

2 , . . . , k−1
2

}}
represents a local neighborhood. Each sample of position (p, q)

is multiplied by 2 before downsampling, and the position is further moved by half so
that the downsampled feature map can be better aligned with the input spectral and
spatial feature map. The convolution of low-frequency feature map XL and k × k × n
convolution kernel can effectively expand the receptive field twofold compared with
ordinary convolution. Therefore, each layer can capture more context information and
improve classification performance. When integrating high-frequency information and
low-frequency information, in order to avoid errors in integrating different frequency
information, average pooling is adopted for downsampling. The output Y = {YH , YL} of
octave convolution is

YH = f (XH ; WH→H) + upsample( f (XL; WL→H), 2), (3)

YL = f (XL;; WL→L) + f (pool(XH , 2); WH→L), (4)

where f (X; W) represents the convolution with parameter W, pool(X, k) represents the
average pooling operation with kernel size k× k and step k, and upsample(X, k) represents
the upsampling operation with nearest interpolation factor k.

2.3. 3D-MSSAM

There is abundant spectral/spatial information contained in hyperspectral images.
If this information can be fully extracted, the classification performance of hyperspectral
images can be greatly improved. At present, linear operations are mainly used for feature
fusion, such as summation or concatenation, but there are better choices. In [59], a multiscale
channel attention module was used to extract important channel information through
branches of different scales, such that features with inconsistent semantics and scales
could be better integrated, and the problem of fusing features of different scales could
also be solved. However, this module is only suitable for processing two-dimensional
information. Abundant spectral/spatial information exists in hyperspectral images; thus,
the multiscale channel attention module can be converted into a 3D-MSSA suitable for
processing hyperspectral data. Figure 4 is a schematic diagram of 3D-MSSA.

The 3D-MSSAM uses 3D multiscale convolution to obtain the spatial information
of hyperspectral images. The spatial attention L(X) for extracting local features through
multiscale three-dimensional convolution is

L(X) = B(PWConv2(δ(B(PWConv1(x))))), (5)

where PWConv1 reduces the number of input feature channels of X to the original 1
r ,B rep-

resents the batchnorm layer, δ represents the ReLU activation function, PWConv2 changes
the number of channels to the same number as the original input channels through point
convolution, and r is the channel scaling ratio. The difference between the global feature
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channel attention g(X) and L(X) is that global average pooling (GAP) is performed on the
input first. The output X′ is

X′ = X⊗M(X) = X⊗ σ(L(X)⊕ g(X)), (6)

where σ represents the sigmoid activation function, ⊕ represents the addition of input
features, and⊗ indicates that the corresponding elements of the feature map are multiplied.

Figure 4. Schematic diagram of 3D-MSSAM.

2.4. Spectral Attention Module

Using the spectral attention module, the interdependencies between spectral feature
maps can be mined, the highly dependent feature maps can be fully extracted, and the
feature representation of semantic information can be effectively improved. In Figure 5,
U ∈ Rc×p×p represents the spectral features, which are the initial input of the spectral
attention module. Here, p× p is the input patch size, and c represents the number of input
channels. Y is the spectral attention map, and the size of Y is c× c. Y is calculated from
the initial spectral feature maps U. yij is used to measure the influence of the i-th spectral
feature on the j-th spectral feature. Ui is the i-th spectral feature, and Uj is the j-th spectral
feature. The calculation process is

yij =
exp(Ui ×Uj)

∑C
i=1 exp(Ui ×Uj)

. (7)

Figure 5. The schematic diagram of spectral attention module.
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Then, the results of matrix multiplication between Y and U are reshaped into Rc×p×p.
Finally, the results are weighted by the scale α parameter, and input U is added to obtain
the final spectral attention map E ∈ Rc×p×p as follows:

Ej = α
C

∑
i=1

(yijUj) + Uj. (8)

Here, α is set to zero during initialization so that it can be learned gradually. The final
map E can improve the resolution of features because it includes the weighted sum of all
channel features.

2.5. DC-TAC

For the convolution layer featuring a convolution kernel of size (H ×W × D), with
the number of filters C and M channels as the input, F ∈ RH×W×D is used to represent the
three-dimensional convolution kernel of the filter. For input I ∈ RA×B×M, the input feature
map has size A× B and channel number M. O ∈ RS×P×C represents the output of channel
C. Thus, the corresponding output feature of the j filter is

O :, :, j =
M

∑
k=1

I:,:,k × F(j)
:,:,k, (9)

where × represents the three-dimensional convolution operator, I:,:,k is the k channel with

the spatial size A × B of the input feature map, and k in F(j)
:,:,k is the k input channel of

F(j). In order to extract spatial feature information more effectively, using the idea of
symmetric convolution, the convolution featuring a convolution kernel of size (d× d× r)
is constructed as an asymmetric convolution containing three parallel branches. The
convolution kernels of the three branches are asymmetric convolution combinations with
the sizes of (d× d× r), (d× 1× r), and (1× d× r), as shown in the schematic diagram
of asymmetric convolution in Figure 6. Let the input of the three branches of each group
of asymmetric convolution be the same, let the step be the same, and let the upper left
corner and upper right corner of the input cube data use the same sliding window. Using
the additivity of the convolution, the outputs of the three branches are added to enrich
the feature space. After the three branches are added, they are normalized, activated, and
transported to the next set of asymmetric convolutions. In convolutional neural networks,
batch normalization is widely used, which can effectively reduce overfitting and training
time. The output feature maps after batch normalization are as follows:

O :, :, j = (
M

∑
k=1

I:,:,k ∗ F(j)
:,:,kF− λj)

αj

δj
+ φj, (10)

where λj and δj are the mean and standard deviation of batch normalization, and αj and
φj are the scale factor and offset, respectively. The output feature maps after convolution
on each branch of each group of asymmetric convolution are fused together after BN
normalization. For each filter j, let F′(j) be the fused three-dimensional convolution kernel
and φ′j be the offset term obtained after fusion. The convolution kernels are (1× 3× 7) and

(3× 1× 7), the filter kernels are F(j) and F̂(j), and the bias terms are φ and φ̂j, respectively.
The convolution kernel with size (3× 3× 7) is F(j), and the bias term is φj. Using the

additivity of convolution, F′(j) and φ′j can be represented as

F′(j)
=

αj

δj
F(j) ⊕

αj

δj
F(j) ⊕

α̂j

δj
F̂(j), (11)
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φ′j = −
λjαj

δj
−

λjαj

δj
−

λ̂jα̂j

δj
+ φj + φj + φ̂j. (12)

Figure 6. Schematic diagram of multiscale asymmetric convolution.

This additive property of the convolution kernel enables the transformed module
to have the same output as the pre-transformed module, which significantly improves
classification performance and accuracy without introducing additional parameters.

2.6. Interactive Information Fusion Module

In this paper, a double-branch structure is adopted. However, it should be noted that
the extracted spatial features also contain supplementary spectral information CSpatial. Simi-
larly, the extracted spectral features also contain supplementary spatial information CSpectral.
Finally, CSpatial and CSpectral are fused and then classified. The experimental results show
that classification using fused spectral and spatial features can achieve better classification
performance and higher classification accuracy than hyperspectral image classification
using spatial or spectral features. A schematic diagram of the proposed interactive infor-
mation fusion module is shown in Figure 7. For the convenience of calculation, firstly, the
shape of the spatial feature is changed to Spatial′, and the shape of the spectral feature
is changed to Spectral′. The spatial and spectral features are transposed to SpatialT and
SpectralT , respectively. The spatial and spectral features of transposition and shape change
are used to obtain supplementary spatial features and supplementary spectral features.
The specific formulas are as follows:

CSpectral =
{

softmax(Spatial′ ⊗ SpectralT)
}
⊗ Spatial′, (13)

CSpatial =
{

softmax(Spectral′ ⊗ SpatialT)
}
⊗ Spectral′, (14)

where CSpectral represents the transmission information from spatial features to spectral fea-
tures, and CSpatial represents the transmission information from spectral features to spatial
features. softmax(Spatial′ ⊗ SpectralT) represents the spatial supplementary information
from spatial features to spectral features. By multiplying softmax(Spatial′ ⊗ SpectralT) and
Spatial′, the transmission information CSpectral from spatial information to spectral informa-
tion can be obtained. softmax(Spectral′ ⊗ SpatialT) represents the spectral supplementary
information from spectral features to spatial features. By multiplying softmax(Spectral′ ⊗
SpatialT) and Spectral′, the transmission information CSpatial from spectral information to
spatial information can be obtained.
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Figure 7. Schematic diagram of the information fusion module.

In order to fuse spatial information into spectral features, CSpatial and Spectral are
added to obtain PSpatial. In order to fuse spectral information into spatial information,
CSpectral and Spatial are added to obtain PSpectral. The calculation formulas are as follows:

PSpatial = CSpatial + Spectral, (15)

PSpectral = CSpectral + Spatial. (16)

Lastly, PSpatial and PSpectral are added to obtain the fused spatial/spectral information.
The calculation formula is as follows:

FFuse = PSpatial + PSpectral. (17)

3. Experiment
3.1. Datasets

The four datasets used in the experiment, as well as the true image and false color
image of the four datasets and the corresponding category information, are shown in
Tables 1–4.

(1) Indian pines (IN): As shown in Table 1, this was the earliest experimental dataset
used for hyperspectral image classification. In 1992, an Indian pine tree in Indiana
was imaged using an aerial visible/infrared imaging spectrometer (AVIRIS). The
researchers used 145 size markers to perform hyperspectral image classification exper-
iments. An image with a spatial resolution of about 20 m was generated by a spectral
imager. To facilitate the experiment, 200 bands were left for the experiment, and the
remaining unnecessary bands were eliminated. In the dataset, the number of pixels is
21,025, the number of ground objects is 10,249, and the number of background pixels
is 10,776. There are 16 categories in the image with uneven distribution.

(2) Pavia University (UP): The UP dataset is shown in Table 2. The UP dataset is part of
the hyperspectral data from the German Airborne Reflective Optical System Imaging
Spectrometer (ROSIS), which was used in 2003 to image the city of Pavia in Pavia,
Italy. The spectral imager mapped 115 bands, eliminating 12 affected by noise and
leaving 103 available bands. There are nine trees, asphalt pavement, and bricks in
the dataset.

(3) Kennedy Space Center (KSC): As shown in Table 3, the KSC dataset was collected
on 23 March 1996 at the Kennedy Space Center in Florida by the NASA AVIRIS
(Airborne Visible/Infrared Imaging Spectrometer) instrument. A total of 224 bands
were collected. After removing the bands with water absorption and a low signal-
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to-noise ratio, 176 bands were left for analysis. There are 13 categories in the dataset
representing various types of land cover in the environment.

(4) Salinas Valley (SV): The SV dataset is shown in Table 4. The SV dataset comprised
an image taken by an AVIRIS imaging spectrometer in Salinas Valley, California, USA.
The SV dataset initially had 224 bands; after removing unnecessary bands, 204 bands
remained for use. The size of the image is 512 × 217, and the number of pixels
in the image is 111,104. After removing 56,975 background pixels, the remaining
54,129 pixels remained for classification. These pixels are classified into 16 categories,
such as fallow cultivation and celery.

Table 1. Real image, false color map, and number of samples available in the Indian pines (IN) dataset.

Real Image and False
Color Map No. Color Name Training Test

C1 Alfalfa 3 43
C2 Corn-notill 42 1386
C3 Corn-mintill 24 806
C4 Corn 7 230
C5 Grass-pasture 14 469
C6 Grass-tress 21 709
C7 Grass-pasture-mowed 3 25

C8 Hay-windrowed 14 464

C9 Oats 3 17

C10 Soybean-notill 29 943

C11 Soybean-mintill 73 2382

C12 Soybean-clean 17 576

C13 Wheat 6 199

C14 Woods 37 1228
C15 Buildings-grass-trees-drives 11 375
C16 Stone-steel-towers 3 90

Total 307 9942

Table 2. Real image, false color map, and number of samples available in the Pavia University
(UP) dataset.

Real Image and False
Color Map NO. Color Name Training Test

C1 Asphalt 33 6598
C2 Meadows 93 18,556
C3 Gravel 10 2089
C4 Trees 15 3049
C5 Painted metal sheets 6 1339
C6 Bare soil 25 5004
C7 Bitumen 6 1324

C8 Self-modulating bricks 18 3664

C9 Shadows 4 943
Total 210 42,566
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Table 3. Real image, false color map, and number of samples available in the Kennedy Space Center
(KSC) dataset.

Real Image and False Color Map NO. Color Name Training Test

C1 Scrub 38 723
C2 Willow swamp 12 231
C3 CP hammock 12 244
C4 Slash pine 12 240
C5 Oak/broadleaf 8 153
C6 Hard wood 11 218
C7 Swamp 5 100

C8 Graminoid marsh 21 410

C9 Spartina marsh 26 494

C10 Cattail marsh 20 384

C11 Salt marsh 20 399

C12 Mud flats 25 478

C13 Water 46 881
Total 256 4955

Table 4. Real image, false color map, and number of samples available in the Salinas Valley
(SV) dataset.

Real Image and False
Color Map NO. Color Name Training Test

C1 Brocoli_green_weeds_1 10 1999
C2 Brocoli_green_weeds_2 18 3708
C3 Fallow 9 1967
C4 Fallow_rough_plow 6 1388
C5 Fallow_smooth 13 2665
C6 Stubble 19 3940
C7 Celery 17 3562

C8 Graps_untrained 56 11,215

C9 Soil_vinyard_develop 31 6172

C10 Corn_cenesced_green_weed 16 3262

C11 Lettuce_romaine_4wk 5 1063

C12 Lettuce_romaine_5wk 9 1833

C13 Lettuce_romaine_6wk 4 912

C14 Lettuce_romaine_7wk 5 1065
C15 Vinyard_untrained 36 7232
C16 Vinyard_vertical_trellis 9 1798

Total 263 53,886

3.2. Experimental Setup and Evaluation Criteria

In the experiment, we set the learning rate to 0.0005. The hardware platform we used
in the experiment was AMD Ryzen7 4800 h, with Radeon graphics 2.90 GHz, Nvida Geforce
rtx2060 GPU, and 16 GB of memory. CUDA 10.0, pytorch 1.2.0, and python 3.7.4 were the
software environments used for the experiments. For the module proposed in this paper,
the input data size of different datasets was set to O ∈ P9×9×N , where N is the number
of bands in the dataset. Furthermore, 3%, 0.5%, 0.4%, and 5% of the data were randomly
selected from the IN, UP, KSC, and SV datasets, respectively. Randomly selected data were
used as training samples for the experiment, while other data were used as test samples for
the experiment.

Overall accuracy (OA), average accuracy (AA), and Kappa coefficients were used to
comprehensively evaluate the proposed methods. Experiments were performed on four
datasets: IN, UP, KSC, and SV. We set the number of experiment iterations to 200, the batch
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size to 16, and the number of repetitions per experiment to 10. Taking the average value
of several groups of experimental results as the final result of the experiment effectively
avoided the data deviation caused by randomness.

3.3. Experimental Results

In order to verify the effectiveness of the proposed method, 10 different methods
were selected for comparison with the proposed method. These methods included tradi-
tional machine learning methods and methods based on deep learning. Methods based
on deep learning included DBDA [49], SSRN [50], PyResnet [51], FDSSC [52], DBMA [53],
A2S2KResNet [60], CDCNN [61], and HybridSN [62], and traditional machine learning
methods included SVM [63]. The visual transformer (ViT) [64] model, which performs
well in the field of image processing, is a classic model. In addition, for the sake of
fairness, all comparison methods were carried out under the same conditions as the meth-
ods proposed in this paper, including experimental parameter setting and experimental
data preprocessing.

(1) Analysis of experimental results on the IN dataset: Figure 8 shows a visual
classification diagram obtained using different methods on the data, and Table 5 shows
the numerical classification results obtained using different methods on the dataset. By
observing the classification results of each method, we can find that, compared with other
comparative methods, the classification results of the method proposed in this paper were
the clearest and closest to the ground-truth map. Not only was the classification result
in the region good, but the classification result at the boundary of the region was also
better than that of the other methods. By observing the numerical results in Table 5, it
can be found that the proposed method had the best classification performance compared
with other methods. Compared with other methods, the OA of the proposed method
increased by 4.13% (A2S2KResNet), 3.65% (DBDA), 6.28% (DBMA), 45.2% (PyResNet),
6.99% (SSRN), 28.46% (SVM), 14.05% (HybridSN), 24.81% (CDCNN), 3.94% (FDSSC), and
17.61% (ViT). The AA increased by 4.21% (A2S2KResNet), 4.4% (DBDA), 8.77% (DBMA),
41.25% (PyResNet), respectively 6.88% (SSRN), 26.83% (SVM), 11.26% (HybridSN), 24.22%
(CDCNN), 4.12% (FDSSC), and 13.32% (ViT), and kappa increased by 4.74% (A2S2KResNet),
4.1% (DBDA), 7.46% (DBMA), 52.49% (PyResNet), 7.82% (SSRN), 30.73% (SVM), 15.85%
(HybridSN), 28.48% (CDCNN), 4.46% (FDSSC), and 20.06% (ViT). The experimental results
showed that the classification performance of this method was better. Compared with other
comparison methods, this method is more comprehensive in extracting the spectral and
spatial features of hyperspectral images.

Figure 8. The overall accuracy and classification maps of different methods on IN dataset: (a)
A2S2KResNe (92.1%); (b) DBDA (92.58%); (c) DBMA (89.95%); (d) PyResNet (51.03%); (e) SSRN
(89.24%); (f) ViT (78.62%); (g) SVM (67.77%); (h) HybridSN (82.18%); (i) DCCNN (71.42%); (j) FDSSC
(92.29%); (k) proposed (96.23%).
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Table 5. KPIs (OA, AA, and kappa) on the Indian pines (IN) dataset with 3% training samples.

Class PyResNet SVM CDCNN HybridSN SSRN ViT DBMA A2S2KResNet FDSSC DBDA Proposed

C1 23.24 35.61 48.56 81.79 81.53 98.86 82.25 89.41 83.52 96.49 99.26
C2 59.25 56.48 66.86 69.12 88.18 73.71 85.93 90.48 90.44 92.25 96.65
C3 45.96 61.56 33.13 91 86.68 68.26 88.64 92.32 87.60 91.6 97.76
C4 34.77 41.55 54.91 84.87 83.27 81.69 87.99 93.78 91.24 92.63 97.22
C5 66.03 83.06 87.35 90.73 96.78 84.26 95.05 97.83 98.31 97.76 98.35
C6 73.15 84.34 91.16 88.59 95.44 84.16 97.53 97.20 98.25 96.85 99.04
C7 32.35 57.86 57.25 83.62 85.98 91.72 51.11 88.69 87.70 65.62 79.78
C8 89.90 88.68 92.92 87.24 95.75 91.95 98.62 98.80 98.45 98.75 99.82
C9 32.33 37.46 48.08 60.44 72.16 78.62 53.31 64.55 72.11 83.42 92.63
C10 50.51 63.33 64.95 86.25 84.93 75.44 86.22 88.58 83.95 86.47 90.85
C11 51.52 64.74 67.74 88.95 88.26 76.28 89.51 89.75 95.72 93.12 95.80
C12 54.67 51.56 41.31 79.03 85.34 67.03 83.18 92.48 90.50 91.22 95.27
C13 76.89 84.75 85.68 93.64 98.15 92.47 96.8 96.88 98.99 96.69 98.88
C14 72.50 89.68 87.25 92.65 94.53 91.89 96.52 96.02 95.95 96.15 97.22
C15 37.80 63.83 86.64 88.83 88.65 81.34 85.19 91.34 92.51 92.37 96.74
C16 68.35 97.67 91.43 92.23 94.48 83.51 95.47 93.60 98.01 90.83 90.21

OA
(%) 51.03 ± 0.04 67.77 ± 0 71.42 ± 2.56 82.18 ± 1.5 89.24 ± 0.41 78.62 89.95 ± 1.06 92.10 ± 0.01 92.29 ±

2.56
92.58 ±

0.53
96.23 ±

0.01
AA
(%) 54.32 ± 0.05 68.74 ± 0 71.35 ± 1.21 84.31 ± 1.61 88.69 ± 0.95 82.25 86.80 ± 0.59 91.36 ± 0.02 91.45 ±

2.56
91.17 ±

0.22
95.57 ±

0.85
Kappa
(%) 43.21 ± 0.05 64.97 ± 0 67.22 ± 2.74 79.85 ± 1.42 87.88 ± 0.47 75.64 88.24 ± 1.19 90.96 ± 0.01 91.24 ±

2.56
91.6 ±

0.63
95.70 ±

0.90

The experimental results showed that the classification performance of this method
was better than that of other methods in most cases. For example, for C8 haystack,
A2S2KResNet, and OA achieved the best classification among all comparison methods,
while the OA for C8 haystack was 99.82%, which is higher than for all other methods. Com-
bined with the above discussion of the experimental results, it is shown that the proposed
method was effective for the IN dataset.

(2) Analysis of experimental results on the UP dataset: Figure 9 shows the visual
classification diagrams obtained using different methods on UP data, and Table 6 shows
the numerical classification results obtained using different methods on the UP dataset.
From the classification results shown in Figure 9, it can be seen that the classification
results obtained using the proposed method were clearer and closer to the ground-truth
map than those obtained using the other methods. By comparing the classification results
of the proposed method with those of other methods, it was found that the proposed
method could accurately predict almost all samples. At the same time, the classification
results in Table 6 show that the proposed method had the best classification performance
compared with all other comparison methods. The OA of the proposed method increased
by 9.82% (A2S2KResNet), 1.25% (DBDA), 5.46% (DBMA), 42.62% (PyResNet), 4.76% (SSRN),
14.23% (SVM), 15.41% (HybridSN), 9.32% (CDCNN), 4.1% (FDSSC), and 3.99% (ViT). The
AA of the proposed method increased by 9.53% (A2S2KResNet), 2.13% (DBDA), 6.84%
(DBMA), 48.18% (PyResNet), 4.69% (SSRN), 18.61% (SVM), 20.8% (HybridSN), 11.53%
(CDCNN), 6.27% (FDSSC), and 5.81% (ViT). The kappa of the proposed method increased
by 13.22% (A2S2KResNet), 1.66% (DBDA), 7.33% (DBMA), 61.05% (PyResNet), 5.48%
(SSRN), 19.92% (SVM), 20.59% (HybridSN), 12.42% (CDCNN), 5.49% (FDSSC), and 5%
(ViT). A comprehensive analysis of the above classification results shows that the proposed
method could effectively capture more useful classification features.

Compared with the other comparison methods, the proposed method had the highest
accuracy for some categories in the UP dataset, such as C2 grassland and C6 bare soil,
with the highest classification accuracy of 99.30% and 98.97%. For other categories, this
method could also achieve high classification performance. In addition, for C7 asphalt, the
classification accuracy of DBDA and DBMA with an attention mechanism was 92.62% and
87.73%, which was significantly higher than that of other methods, successfully proving that
spatial attention and spectral attention play a positive role in feature learning. The proposed
method had the best classification effect. In combination with the above comprehensive
analysis, it can be proven that the proposed three-dimensional multiscale space attention
module can extract more spatial features conducive to classification.
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Figure 9. The overall accuracy and classification maps of different methods on UP dataset: (a)
A2S2KResNe (87.44%); (b) DBDA (96.01%); (c) DBMA (91.8%); (d) PyResNet (54.64%); (e) SSRN
(92.50%); (f) ViT (93.23%); (g) SVM (83.03%); (h) HybridSN (81.85%); (i) DCCNN (87.94%); (j) FDSSC
(93.16%); (k) proposed (97.26%).

Table 6. KPIs (OA, AA, and kappa) on the Pavia University (UP) dataset with 0.5% training samples.

Class PyResNet SVM CDCNN HybridSN SSRN ViT DBMA A2S2KResNet FDSSC DBDA Proposed

C1 39.25 82.27 87.78 76.91 94.10 89.63 88.83 83.81 91.64 92.52 95.64
C2 71.05 83.54 94.73 92.80 96.66 96.46 97.07 92.72 97.06 98.07 99.30
C3 50.69 57.55 65.28 69.34 76.75 81.26 77.08 72.96 86.22 87.86 97.07
C4 65.45 93.33 96.13 80.84 99.29 98.03 96.71 98.11 96.75 96.27 98.38
C5 98.64 94.37 97.53 98.85 99.64 95.76 97.46 98.67 99.74 97.84 98.60
C6 44.86 81.66 89.62 83.48 93.85 93.32 93.66 86.51 96.83 98.47 98.97
C7 23.89 48.14 78.28 65.72 86.48 78.26 87.73 88.07 71.04 92.62 97.98
C8 27.76 72.15 78.53 55.59 83.71 88.48 81.17 74.10 77.84 87.43 87.74
C9 16.39 98.96 92.05 60.94 98.97 98.21 95.37 90.97 98.73 97.47 98.03

OA (%) 5464 ±
0.06 83.03 ± 0 87.94 ±

0.13
81.85 ±

0.01
92.50 ±

1.32
93.24 ±

1.06
91.8 ±

0.56 87.44 ± 0.02 93.16 ±
2.56

96.01 ±
0.03

97.26 ±
0.67

AA (%) 4867 ±
0.11 78.24 ± 0 85.32 ±

0.19
76.05 ±

0.03
92.16 ±

1.31
91.04 ±

1.13
90.01 ±

2.64 87.32 ± 0.02 90.58 ±
2.56

94.72 ±
0.59

96.85 ±
0.94

Kappa
(%)

3532 ±
0.08 76.45 ± 0 83.95 ±

0.16
75.78 ±

0.02
90.89 ±

1.61
91.37 ±

1.01
89.04 ±

0.75 83.15 ± 0.02 90.88 ±
2.56

94.71 ±
0.04

96.37 ±
0.90

(3) Analysis of experimental results on SV dataset: Figure 10 shows the results of
the visual classification of the SV dataset using different methods. Table 7 shows the
numerical classification results for the SV dataset using different methods. By looking at
Figure 10, we can see that the classification map of the proposed method was closer to the
ground-truth map than the other methods. The classification boundaries of the different
categories were also very clear, and almost all samples could be accurately predicted. By
looking at Figure 10, it can be found that the proposed method had the best classification
effect compared with other methods. The OA of the proposed method increased by 2.76%
(A2S2KResNet), 3.6% (DBDA), 4.39% (DBMA), 5.83% (PyResNet), 5.3% (SSRN), 10.36%
(SVM), 10.01% (HybridSN), 8.98% (CDCNN), 1.55% (FDSSC), and 4.96% (ViT); the AA
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increased by 1.31% (A2S2KResNet) 1.15% (DBDA), 2.23% (DBMA), 4.44% (PyResNet),
1.96% (SSRN), 6.35% (SVM), 16.32% (HybridSN), 5.96% (CDCNN), 0.41% (FDSSC) and
3.48% (ViT); and kappa increased by 3.07% (A2S2KResNet), 4.01% (DBDA), 4.88% (DBMA),
6.5% (PyResNet), 5.9% (SSRN), 11.59% (SVM), 11.15% (HybridSN), 9.99% (CDCNN), 1.73%
(FDSSC) and 1.59% (ViT). Combined with the above analysis of the classification results,
we found that the proposed method had better classification results.

Figure 10. The overall accuracy and classification maps of different methods on SV dataset: (a)
A2S2KResNe (94.58%); (b) DBDA (93.74%); (c) DBMA; (d) PyResNet (91.51%); (e) SSRN (92.04%); (f)
ViT (95.79%); (g) SVM (86.98%); (h) HybridSN (87.33%); (i) CDCNN (88.36%); (j) FDSSC (95.79%); (k)
proposed (97.34%).
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Table 7. KPIs (OA, AA, and kappa) on the Salinas Valley (SV) dataset with 0.5% training samples.

Class PyResNet SVM CDCNN HybridSN SSRN ViT DBMA A2S2KResNet FDSSC DBDA Proposed

C1 98.49 99.41 97.75 84.65 96.17 96.76 97.53 99.83 100 98.74 99.22
C2 99.68 97.89 97.47 95.49 97.85 98.32 98.63 99.99 96.99 98.18 99.46
C3 96.36 88.99 88.54 88.10 95.26 96.41 95.82 94.97 98.01 96.48 97.63
C4 96.68 96.59 94.56 65.21 98.66 97.89 91.16 96.15 96.96 95.31 95.99
C5 91.02 96.08 95.09 91.03 97.25 97.55 95.75 99.13 99.58 97.15 99.76
C6 99.61 99.91 96.35 99.42 98.95 98.80 98.33 99.72 99.66 98.85 99.94
C7 98.68 96.62 93.88 97.16 98.33 96.72 96.69 99.72 92.07 99.33 97.75
C8 83.08 73.17 81.45 83.37 87.26 91.32 88.39 90.15 99.56 92.84 99.80
C9 98.85 97.09 97.59 98.95 99.37 93.27 98.16 99.66 97.03 98.06 95.92

C10 97.54 86.37 85.83 93.57 96.37 92.05 94.88 98.51 97.30 98.53 95.07
C11 95.31 86.97 83.66 54.51 96.82 93.07 92.63 95.20 96.06 96.74 99.24
C12 98.18 96.21 96.77 86.55 97.42 98.89 96.78 97.63 98.41 97.85 99.18
C13 75.11 92.45 97.87 44.36 97.24 97.43 97.28 97.09 99.90 98.48 99.91
C14 87.30 93.02 93.22 43.26 97.81 94.23 96.96 93.28 96.75 97.56 96.18
C15 81.14 76.02 73.85 86.07 84.33 82.98 84.03 84.79 86.87 84.23 87.07
C16 98.54 98.82 96.81 93.78 99.54 95.88 98.04 99.77 99.66 98.96 99.77

OA (%) 91.51 ±
0.01 86.98 ± 0 88.36 ±

0.28
87.33 ±

0.04
92.04 ±

0.96
95.79 ±

0.53
92.95 ±

0.33 94.58 ± 0.01 95.79 ±
0.36

93.74 ±
0.74

97.34 ±
0.01

AA (%) 93.47 ±
0.02 91.56 ± 0 91.95 ±

0.66
81.59 ±

0.12
95.95 ±

0.21
94.43 ±

0.62
95.68 ±

0.2 96.60 ± 0.01 97.50 ±
0.54

96.76 ±
0.17

97.91 ±
0.28

Kappa
(%)

90.54 ±
0.01 85.45 ± 0 87.05 ±

0.3
85.89 ±

0.05
91.14 ±

1.08
95.45 ±

0.69
92.16 ±

0.34 93.97 ± 0.01 95.31 ±
0.32

93.05 ±
0.8

97.04 ±
0.01

The classification accuracy of C6 stubble and C13 lettuce reached 99.94% and 99.91%,
respectively. According to the above analysis and the classification results in the SV
dataset, the classification performance of the proposed method was better than that of the
other methods.

(4) Analysis of experimental results on the KSC dataset: Figure 11 shows the visual
classification maps obtained using different methods on KSC datasets, and Table 8 shows
the numerical classification results obtained using different methods on KSC datasets. As
can be seen from the classification result diagram shown in Figure 11, the classification
results of the proposed method were the clearest. Specifically, the OA of the proposed
method increased by 7.67% (A2S2KResNet), 2.13% (DBDA), 4.77% (DBMA), 7.4% (PyRes-
Net), 4.37% (SSRN), 10.93% (SVM), 19.17% (HybridSN), 9.56% (CDCNN), 3.27% (FDSSC),
and 6.51% (ViT); AA increased by 7.57% (A2S2KResNet) 3.43% (DBDA), 7.1% (DBMA),
9.1% (PyResNet), 6.18% (SSRN), 15.78% (SVM), 20.15% (HybridSN), 14.3% (CDCNN), 5.84%
(FDSSC) and 4.66% (ViT); and kappa increased by 6.51% (A2S2KResNet), 2.25% (DBDA),
5.2% (DBMA), 8.13% (PyResNet), 4.75% (SSRN), 12.06% (SVM), 21.22% (HybridSN), 10.52%
(CDCNN), 3.53% (FDSSC) and 6.8% (ViT). By observing the experimental results, it was
found that the method could extract more features that contributed to the classification.

Figure 11. The overall accuracy and classification maps of different methods on the KSC dataset: (a)
A2S2KResNe (91.22%); (b) DBDA (96.76%); (c) DBMA (94.12%); (d) PyResNet (91.49%); (e) SSRN
(95.52%); (f) ViT (92.38%); (g) SVM (87.96%); (h) HybridSN (79.72%); (i) DCCNN (89.33%); (j) FDSSC
(95.62%); (k) proposed (98.89%).
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Table 8. KPIs (OA, AA, and kappa) on the Kennedy Space Center (KSC) dataset with 5% training samples.

Class PyResNet SVM CDCNN HybridSN SSRN ViT DBMA A2S2KResNet FDSSC DBDA Proposed

C1 94.09 92.43 96.81 88.08 98.4 89.06 99.39 98.28 99.73 99.67 99.51
C2 85.59 87.14 83.65 76.94 94.52 92.79 93.8 96.06 93.99 95.08 96.13
C3 81.14 72.47 83.92 69.65 85.2 91.82 80.2 92.01 82.50 88.72 92.16
C4 77.23 54.45 58.61 71.36 74.55 90.62 75.31 87.51 78.78 80.82 89.55
C5 74.96 64.11 52.83 83.99 75.13 90.29 69.6 86.26 68.55 78.14 91.87
C6 78.76 65.23 77.17 73.62 94.35 96.01 95.06 100 93.31 97.75 99.30
C7 84.73 75.5 75.34 63.61 84.64 92.43 87.08 88.30 88.69 95.15 95.58
C8 95.21 87.33 85.83 76.35 96.97 88.50 95.4 89.30 98.83 99.08 99.11
C9 93.93 87.94 91.65 74.55 97.83 90.74 96.21 100 99.80 99.98 100

C10 98.96 96.01 93.87 80.07 98.84 83.98 96.13 98.87 100 99.92 99.95
C11 99.48 96.03 98.77 94.41 99.14 93.15 99.64 98.82 99.15 98.92 99.33
C12 96.13 93.75 94.08 71.55 98.17 86.79 98.19 96.73 98.07 97.95 98.48
C13 99.72 99.72 99.8 91.96 100 95.64 100 100 100 99.97 99.94

OA (%) 91.49 ±
0.02 87.96 ± 0 89.33 ±

0.65
79.72 ±

4.31
94.52 ±

0.9
92.38 ±

0.16
94.12 ±

0.27 91.22 ± 0.58 95.62 ±
0.03

96.76 ±
0.51

98.89 ±
0.45

AA (%) 89.23 ±
0.02 82.55 ± 0 84.03 ±

0.95
78.17 ±

4.24
92.15 ±

1.87
93.67 ±

0.09
91.23 ±

0.75 90.76 ± 0.49 92.49 ±
0.06 94.9 ± 0.2 98.33 ±

0.19
Kappa

(%)
90.52 ±

0.02 86.59 ± 0 88.13 ±
0.73

77.43 ±
4.7 93.9 ± 1 91.85 ±

0.12
93.45 ±

0.31 92.14 ± 0.59 95.12 ±
0.03

96.4 ±
0.57

98.65 ±
0.36

By observing the classification results of different categories in the KSC dataset, it is
clear that, in most cases, the classification performance of the proposed method was better
than that of other comparison methods. For example, the classification accuracy of C8 grass
swamp and C9 rice grass swamp reached 99.11% and 100%, respectively. According to the
above comprehensive analysis, the classification performance of this method was better
than that of other methods.

4. Discussion
4.1. The Performance Analysis of Each Module

(1) 3D-OCONV: In order to verify that the 3D-OCONV used in the proposed method
could effectively improve classification performance, this paper presents a comparative
experiment using 3D-CNNs instead of 3D-OCONV (proposed method) to extract the spatial
and spectral information of hyperspectral images. Experiments were carried out on four
datasets: IN, UP, KSC, and SV. Figure 12 shows the OAs of the 3D-CNNs and 3D-OCONV.
By looking at Figure 12, it is clear that the OA of the proposed method was the highest.
The OA of the proposed method on the four datasets (IN, UP, KSC, and SV) was 0.7%,
0.64%, 1.61%, and 1.36% higher compared to 3D-CNNs, respectively. This demonstrates
that the features extracted by 3D-OCONV were more representative and comprehensive,
thus achieving good classification performance for hyperspectral images.

Figure 12. OAs of 3D-CNNs and 3D-OCONV on IN, UP, KSC, and SV datasets (%).
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(2) 3D-MSSAM: Five groups of modules were designed and compared with the
proposed 3D-MSSAM to verify classification performance. The first set of modules did
not use spectral attention or multiscale spatial attention, recorded as “no attention.” The
second group of modules only used spectral attention, recorded as “spectral attention.”
The third group of modules only used spatial attention, recorded as “spatial attention.” The
fourth group of modules only used 3D-MSSAM, recorded as “3D-MSSAM.” The fifth group
of modules adopted both spectral attention and spatial attention, recorded as “spectral
+ spatial attention.” The sixth group of modules included all modules proposed in this
paper, recorded as the “proposed method.” For a fair comparison, the components were
evaluated under the same conditions. The comparative experiments of the six groups
of modules were carried out on four datasets: IN, UP, KSC, and SV. Table 9 shows the
OAs of the six modules for the different datasets. By observing Table 9, we can find that
the OA value of the proposed method was the highest. Compared with other modules,
on the IN dataset, the OA of the proposed module was 1.03%, 1.35%, 0.83%, 0.12%, and
2.16% higher compared to “no attention,” “spectral attention,” “spatial attention,” “3D-
MSSAM,” and “spectral + spatial attention,” respectively. In the UP dataset, the OA of
the proposed module was 2.44%, 2.03%, 2.98%, 2.1%, and 0.9% higher compared to “no
attention,” “spectral attention,” “spatial attention,” “3D-MSSAM,” and “spectral + spatial
attention,” respectively. In the KSC dataset, the OA of the proposed module was 1.70%,
1.15%, 1.19%, 2.04%, and 2.43% higher compared to “no attention,” “spectral attention,”
“spatial attention,” “3D-MSSAM,” and “spectral + spatial attention,” respectively. In the
SV dataset, the OA of the proposed module was 1.02%, 1.26%, 1.09%, 1.19%, and 1.31%
higher compared to “no attention,” “spectral attention,” “spatial attention,” “3D-MSSAM,”
and “spectral + spatial attention,” respectively. The experimental results showed that the
proposed module had the best classification performance, with a strong generalization
ability, and it could extract more representative spatial and spectral features.

Table 9. The OAs of different feature extraction modules on IN, UP, KSC, and SV datasets (%).

No
Attention

Spectral
Attention

Spatial
Attention

3D-
MSSAM

Spectral + Spatial
Attenton

Proposed
Method

IN 95.20 94.88 95.40 96.11 94.07 96.23
UP 94.82 95.23 94.28 95.16 96.36 97.26
KSC 97.82 97.74 97.70 96.85 96.46 98.89
SV 96.32 96.08 96.25 96.15 96.03 97.34

(3) DC-TAC: Using OA as a measure of classification performance, we performed
some comparative experiments to verify the classification performance of the proposed
DC-TAC module. The designed comparison experiment was as follows: using 3D-CNNs
instead of DC-TAC of the proposed method, recorded as “no DC-TAC,” we performed
experiments on four datasets: IN, UP, KSC, and SV. Figure 13 shows the classification
results of the experiment. By looking at the classification results in Figure 13, we can see
that the OA obtained by the proposed method was the highest. The OA without DC-TAC
on the IN dataset was 0.64% lower than that obtained by the proposed method; the OA
of the proposed method on the UP dataset was 0.51% higher than that without DC-TAC;
the OA without DC-TAC on the KSC dataset was 0.96% lower than that obtained by the
proposed method; and the OA of the proposed method on the SV dataset was 0.65% higher
than that without DC-TAC. By observing the above experimental results, it can be found
that the proposed DC-TAC module was beneficial in improving classification performance.
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Figure 13. OAs with different feature extraction modules on IN, UP, KSC, and SV datasets (%).

(4) Interactive information fusion module: The proposed information fusion module
can integrate the rich spectral information contained in the spatial features extracted
from the spatial branches into the spectral features extracted from the spectral branches.
Similarly, the spectral features extracted by the same spectral branches contain rich spatial
information and can be fused with spatial features. In order to better verify the performance
of the proposed information fusion module, the classification results of the module with
and without the information fusion module were compared. The experimental results
of the two experiments are shown in Figure 14. It can be easily found from Figure 14
that the classification performance of the proposed method was better than that of the
method without the information fusion module. The experimental results proved that the
information fusion module was helpful in improving the classification performance of
hyperspectral images.

Figure 14. OAs with different feature extraction modules on IN, UP, KSC, and SV datasets (%).
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4.2. The Influence of the Proportion of Training Samples on the Experimental Results

In this experiment, four datasets were used, i.e., IN, UP, KSC, and SV, to carry out
validation experiments with training samples of different sizes. The performance of the
proposed module and the comparison module was verified. From the datasets, 5%, 10%,
and 15% were randomly selected as training samples to train the proposed module and
other comparison modules. Figure 15 shows the classification results of each method on
the four well-known geographic datasets: IN, UP, KSC, and SV.

Figure 15. Classification performance of different methods under different training sample ratios on
IN, UP, SV, and KSC datasets: (a) classification results on IN dataset; (b) classification results on the
UP dataset; (c) classification results on the SV dataset; (d) classification results on the KSC dataset.

From the observation in Figure 15, it can be seen that when a small number of training
samples were used, the proposed method was the best, while the performances of CDCNN
and SVM were relatively poor. The classification accuracy of each method increased with
the number of training samples from the four datasets (IN, UP, KSC, and SV), but the
proposed method still achieved higher classification accuracy. The experimental results
showed that this method had a good ability to increase the feature effectiveness of the
high-dimensional spectral images.
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5. Conclusions

In this paper, a new end-to-end network for hyperspectral image classification is
proposed. Firstly, a 3D-OCONV is designed and introduced into the spatial branch and
spectral branch, respectively. This module can make the fusion of high-frequency and
low-frequency information better integrated; at the same time, the network parameters can
be reduced. Subsequently, the mechanism of spectral attention in spectral branching and
3D-MSSAM in spatial branching were developed to highlight important spatial regions and
spectral bands to enhance the ability of feature representation. To further extract spectral
and spatial information at different scales, a DC-TAC is proposed to further capture the
useful information of the two branches. At the end, an interactive information fusion
module was designed, which allowed the spatial and spectral information acquired by
the two branches to be brought together interactively. The final result of the experiment
showed that even if there were few training samples, this method could still achieve good
classification performance. In the future, we will do some work to make the network
simpler and have fewer network parameters, which will shorten the training time and
further improve the classification performance of hyperspectral images.

Author Contributions: Conceptualization, C.S.; Data curation, C.S. and J.S.; Formal analysis, T.W.;
Methodology, C.S. and J.S.; Software, J.S.; Validation, C.S. and J.S.; Writing—original draft, J.S.;
Writing—review & editing, C.S. and L.W. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded in part by the National Natural Science Foundation of China
(42271409, 62071084), in part by the Heilongjiang Science Foundation Project of China under Grant
LH2021D022, and in part by the Fundamental Research Funds in Heilongjiang Provincial Universities
of China under Grant 135509136.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank the handling editor and the anonymous reviewers for
their careful reading and helpful remarks.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wei, X.; Li, W.; Zhang, M.; Li, Q. Medical Hyperspectral Image Classification Based on End-to-End Fusion Deep Neural Network.

IEEE Trans. Instrum. Meas. 2019, 68, 4481–4492. [CrossRef]
2. Patel, N.K.; Patnaik, C.; Dutta, S.; Shekh, A.M.; Dave, A.J. Study of crop growth parameters using airborne imaging spectrometer

data. Int. J. Remote Sens. 2001, 22, 2401–2411. [CrossRef]
3. Feng, L.; Zhu, S.; Zhou, L.; Zhao, Y.; Bao, Y.; Zhang, C.; He, Y. Detection of Subtle Bruises on Winter Jujube Using Hyperspectral

Imaging with Pixel-Wise Deep Learning Method. IEEE Access 2019, 7, 64494–64505. [CrossRef]
4. Xu, Y.; Du, B.; Zhang, F.; Zhang, L. Hyperspectral image classification via a random patches network. ISPRS J. Photogramm.

Remote Sens. 2018, 142, 344–357. [CrossRef]
5. Zhang, X.; Sun, Y.; Jiang, K.; Li, C.; Jiao, L.; Zhou, H. Spatial Sequential Recurrent Neural Network for Hyperspectral Image

Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4141–4155. [CrossRef]
6. Heylen, R.; Parente, M.; Gader, P. A Review of Nonlinear Hyperspectral Unmixing Methods. IEEE J. Sel. Top. Appl. Earth Obs.

Remote Sens. 2014, 7, 1844–1868. [CrossRef]
7. Li, W.; Du, Q. Collaborative Representation for Hyperspectral Anomaly Detection. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1463–1474.

[CrossRef]
8. Ma, X.; Zhang, X.; Tang, X.; Zhou, H.; Jiao, L. Hyperspectral Anomaly Detection Based on Low-Rank Representation with

Data-Driven Projection and Dictionary Construction. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2226–2239. [CrossRef]
9. Delalieux, S.; Somers, B.; Haest, B.; Spanhove, T.; Vanden Borre, J.; Mücher, C.A. Heathland conservation status mapping through

integration of hyperspectral mixture analysis and decision tree classififiers. Remote Sens. Environ. 2012, 126, 222–231. [CrossRef]
10. Ham, J.; Chen, Y.; Crawford, M.M.; Ghosh, J. Investigation of the random forest framework for classification of hyperspectral

data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 492–501. [CrossRef]
11. Gualtieri, J.A.; Chettri, S. Support vector machines for classification of hyperspectral data. In Proceedings of the International

Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, USA, 24–28 July 2000; Volume 2, pp. 813–815.
12. Li, W.; Du, Q. A survey on representation-based classification and detection in hyperspectral remote sensing imagery. Pattern

Recognit. Lett. 2016, 83, 115–123. [CrossRef]

http://doi.org/10.1109/TIM.2018.2887069
http://doi.org/10.1080/01431160117383
http://doi.org/10.1109/ACCESS.2019.2917267
http://doi.org/10.1016/j.isprsjprs.2018.05.014
http://doi.org/10.1109/JSTARS.2018.2844873
http://doi.org/10.1109/JSTARS.2014.2320576
http://doi.org/10.1109/TGRS.2014.2343955
http://doi.org/10.1109/JSTARS.2020.2990457
http://doi.org/10.1016/j.rse.2012.08.029
http://doi.org/10.1109/TGRS.2004.842481
http://doi.org/10.1016/j.patrec.2015.09.010


Remote Sens. 2023, 15, 257 24 of 25

13. Soltani-Farani, A.; Rabiee, H.R.; Hosseini, S.A. Spatial-Aware Dictionary Learning for Hyperspectral Image Classification. IEEE
Trans. Geosci. Remote Sens. 2015, 53, 527–541. [CrossRef]

14. Zhao, J.; Zhong, Y.; Jia, T.; Wang, X.; Xu, Y.; Shu, H.; Zhang, L. Spectral-spatial classification of hyperspectral imagery with
cooperative game. ISPRS J. Photogramm. Remote Sens. 2018, 135, 31–42. [CrossRef]

15. Li, J.; Bioucas-Dias, J.M.; Plaza, A. Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic
regression and Markov random fifields. IEEE Trans. Geosci. Remote Sens. 2012, 50, 809–823. [CrossRef]

16. Cao, X.; Wang, X.; Wang, D.; Zhao, J.; Jiao, L. Spectral–Spatial Hyperspectral Image Classification Using Cascaded Markov
Random Fields. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4861–4872. [CrossRef]

17. Li, G.; Li, L.; Zhu, H.; Liu, X.; Jiao, L. Adaptive Multiscale Deep Fusion Residual Network for Remote Sensing Image Classification.
IEEE Trans. Geosci. Remote Sens. 2019, 57, 8506–8521. [CrossRef]

18. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of
the International Conference on Medical Image Computing and Computer-Assisted Intervention, arXiv, Computer Science,
Computer Vision and Pattern Recognition, Munich, Germany, 18 May 2015; Volume 9351, pp. 234–241.

19. Wang, R.J.; Li, X.; Ling, C.X. Pelee: A Real-Time Object Detection System on Mobile Devices. In Computer Vision and Pattern
Recognition; Cornell University: Ithaca, NY, USA, 2018; Volume 10, p. 1804.06882.

20. Zeng, D.; Liu, K.; Chen, Y.; Zhao, J. Distant Supervision for Relation Extraction via Piecewise Convolutional Neural Networks. In
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 17–21 September
2015; Volume 9.

21. Gehring, J.; Auli, M.; Grangier, D.; Yarats, D.; Dauphin, Y.N. Convolutional Sequence to Sequence Learning. In Proceedings of the
Machine Learning Research, Sydney, Australia, 6–11 August 2017; Volume 70, pp. 1243–1252.

22. He, H.; Gimpel, K.; Lin, J. Multi-Perspective Sentence Similarity moduleing with Convolutional Neural Networks. Nat. Lang.
Process. 2015, 26–31, 1576–1586.

23. Alipourfard, T.; Arefi, H.; Mahmoudi, S. A Novel Deep Learning Framework by Combination of Subspace-based Feature
Estraction and Convolutional Neural Networks for Hyperspectral Images Classification. In Proceedings of the IEEE IGARSS,
Valencia, Spain, 22–27 July 2018; Volume 13.

24. Huang, K.-K.; Ren, C.-X.; Liu, H.; Lai, Z.-R.; Yu, Y.-F.; Dai, D.-Q. Hyperspectral Image Classification via Discriminant Gabor
Ensemble Filter. IEEE Trans. Cybern. 2021, 52, 8352–8365. [CrossRef]

25. Ding, Y.; Zhao, X.; Zhang, Z.; Cai, W.; Yang, N.; Zhan, Y. Semi-Supervised Locality Preserving Dense Graph Neural Network with
ARMA Filters and Context-Aware Learning for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–12.
[CrossRef]

26. Kang, X.; Li, C.; Li, S.; Lin, H. Classification of Hyperspectral Images by Gabor Filtering Based Deep Network. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 2018, 11, 1166–1178. [CrossRef]
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